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SECTION I
INTRODUCTION

The area of Computational Fluid Dynamics (CFD) has seen tremendous
progress in recent years, due to improvements in both computational
algorithms and computer hardware. The improvements now make it possible
to obtain steady inviscid solutions for very complex configurations such
as modern fighter aircraft and the external weapons used on these
aircraft (Reference 1). However, many of these aircraft and weapons
operate in flow conditions which make inviscid solutions an inappropriate
model. Modern fighter aircraft must be able to release stores and
missiles while maneuvering at transonic speeds. The analysis of these
problems requires unsteady calculations, as does the analysis of
aeroelastic problems. Many modern fighter aircraft have internal bays in
which to carry their weapons. The analysis of these problems requires
that a highly separated unsteady flow field be solved. Solutions which
include the effects of viscosity are necessary to appropriately model
these flow fields; however, for these types oI configurations viscous
solutions are not practical with current CFD codes, due to the large
computer run times and large memory requirements. The emphasis of the
work presented here is development of a scheme which is computationally
efficient and accurate enough to make viscous calculations possible for
the design and analysis of these configurations in steady and unsteady
flow fields.

The approach taken is an extension of two Buler algorithms de-
scribed by Belk © and Whitfield '. The schemes used in this work are

first, a flux vector split scheme based on Steger-Warming + splitting

]




and secondly, a flux difference split scheme based on Roe's 5

approximate Riemann solver. The inclusion of the viscous terms into

these Euler algorithms is accomplished as described by Gatlin®, where
the viscous terms have been added to the algorithm explicitly, in order
to save the cost of computing and storing the viscous flux jacobians. The
explicit treatment of the diffusive terms also preserves the
computational efficiency peculiar to the inviscid algorithm.

The three-dimensional Navier-Stokes equations in differential form
are presented in Section II. The curvilinear coordinate transformation
and the thin-layer assumption to reduce the Navier-Stokes equation set

are also presented.

A comparison of the two basic implicit algorithms is presented in
Section III. A short discussion is presented which compares and
contrasts the two splitting techniques, flux vector splitting (FVS) and
flux difference splitting (FDS). The advantages and disadvantages of the
two algorithms are discussed, with the discussion based on the one-
dimensional Euler equations. The two algorithms are then extended to the
three-dimensional Euler equations. The FVS algorithm has been presented
in some detail by Whitfield ’ (for stationary grids), and Belk ° (for
dynamic grids) and therefore is only summarized here. This algorithm has
been used by many people to obtain solutions for the Euler equations
which campare well with experimental data for both steady and unsteady
transonic flow problems. Lijewski® has shown excellent steady results
for a camplex canard-body-tail configuration at transonic Mach numbers
and moderate range of incidence angles, while Belk ® has shown

insteady results for oscillating airfoils and wings. However, Gatlin®
2




and van Leer!? have shown that in some cases the FVS scheme is too
dissipative to give good numerical results for viscous calculations,
especially in high gradient regions such as boundary layers. Also
presented in Section III is a discussion of the FDS scheme based on Roe's
method of evaluating the numerical fluxes for the three-dimensional Euler
equations. Recent works by van Leer!? and Chakravarthy (References
11,12,13,14) and many others have discussed implementations of this FDS
scheme. However, Whitfield, et al.? and Janus'!'® have described a

hybrid Roe algorithm which has been used to obtain excellent inviscid

results for complex flow fields!t.

Section IV discusses the extension of the inviscid algorithms
discussed in Section III to the thin-layer Navier-Stokes (TLNS)
equations. The viscous terms are added to the explicit side of the
solution equation and are therefore treated as source terms to the
inviscid equations. This treatment of the viscous terms reduces the cost
of normal viscous calculations substantially by saving the cost
associated with computing and storing the viscous flux jacobians.
Additionally, work was performed to allow for more efficient calculations
of unsteady viscous flows using the time lagged viscous terms. One of
the major problems with unsteady TLNS calculations is the severe time
step size limitations which must be imposed to maintain a reasonable
Courant-Friedrichs-Lewy (CFL) number. Efforts to execute the unsteady
TLNS code for oscillating airfoils and wings using very large CFL numbers
are discussed. In order to maintain stability at these large CFL numbers
a form of subiterations similar to those described in Reference 17 has
been implemented. The result of subiterations is to converge the
solution at a given time step before preceding to the next step, thus

3




eliminating linearization and factorization errors and increasing the

stability.

Section V describes the steady results obtained for transonic Mach
numbers and moderate range of incidence angles for a laminar flat plate,
RAE 2822 airfoil and the ONERA M6 wing. All the results presented in
this chapter show a comparison between the FVS and FDS algorithms for
viscous solutions and are compared with experimental data where

available.

Section VI discusses the unsteady results for both oscillating
airfoils and wings in transonic flow and moderate range of angles of
attack. The oscillating airfoil case (NACA 0012) is compared for various
time steps sizes and number of subiterations while the oscillating wing

(Langley Rectangular Planform Supercritical Wing) results are compared

with the inviscid results of Belk © and experimental data.

Conclusions are given in Section VII.




SECTION II
NAVIER-STOKES EQUATIONS

2.1 Vector Form of the Navier-Stokes Hquations

The conmpressible, three-dimensional Navier-Stokes equations in
Cartesian coordinates, written in strong conservation form (without
body forces or external heat addition) are

ah

‘_+__+a_g+ = 0

at & 3y Az

where ﬁ,/f,/c}, and /}\) are dimensional quantities given by

- -
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A AT N
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and /é= P +%p(u+v+w)

The first row in BEquation (2.1) corresponds to the continuity
equation, the next three rows are referred to as the momentum equations
and the last row is the energy equation. In the strictest sense only the
momentum equations are the Navier-Stokes equations; however, it is common
practice to refer to the entire set of five equations as the Navier-

Stokes equations.

The density of the fluid is p, the pressure is P, and the velocity

components in the Cartesian coordinate directions 9(,9, and 2 are 0,V,
6




and W respectively. The relationship between & and P is the result
of the perfect gas assumption and y is the ratio of specific heats,

i (2.2)
Y T )
The camponents of the viscous stress tensor are given as %11 .

If the fluid is assumed to behave as a "Newtonian fluid”, that is, the
stress is linearly dependent on the rates of strain of the fluid and the
coefficient of bulk viscosity is negligible so that the relationship

A
between ﬁ(coefficient of viscosity) and )\ (second coefficient of

viscosity) is

N

\=-%i (2.3)

then the visoous stress tensor in Cartesian coordinates is given as,

/‘,\-XX = % /l'\l (2{\1)( - {\/y - \/X\]Z)
A _ 2 Fay N _ N _ A
T, =310 v, -u -w,)
N _ 2 N N _ N _ N
T.=5H (ZWZ u, Vy) (2.4)
N _ N _ A (/\ + N )
Ty =Ty =1 W +V,

N _ A _ Ay (/\ + Ia )
TXZ - TZX - |‘l WX u;:

N A A (/\ A )
Tye =Ty =LAV, * W,

and the heat-flux vector in the Cartesian coordinate directions is given

as

PI
i

EPP— T (2.5)
r
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where P, is the Prandtl number.

It should be noted that the subscripts on the velocity components

{,%,% and on the temperature T denote partial differentiation,

while those on the stress and heat flux terms denote Cartesian coordinate

directions.

The dimensional quantities (denoted by » ) are nondimensionalized

using freestream conditions (denoted by o), I, (the reference length

used in the Reynolds number) and,

A A
- X -
SRR A
i v
u = /\_ V = /\_
a(!) allf)
i p
= KL p=a
1% P,
vhere 300 = 3\//1\7&%0

is the freestream speed of sound.

N
z =% t =
L
N
w o= a
a-n
A
p’,.\l,)\z T
coa‘l‘

—

03>

[

m>|m> >

8

>

(2.6)

This nondimensionalization results in a set equations of exactly
the same form as BEquation (2.1) but without the a.

aq , af

i T ox

(2.7)




2.2 Curvilinear Coordinate Transformation

Bguation (2.7) can be transformed into a curvilinear coordinate
system which allows the use of body-conforming grids in order to simplify
the implementation of boundary conditions. The curvilinear coordinates

used in this transformation are

£ o= g(x,y,z,t)

n= n(x,y,z,t) (2.8)
= {xy,2,t)

T =71(t)

Note the use of time, t, to define the curvilinear coordinates. This
will allow for the time dependent motion of a body. The details of a
time dependent transformation to curvilinear coordinates are given for

the Navier-Stokes equations in Appendix A.

2.3 Thin-Layer Navier-Stokes BEquations

A numerical solution of the Navier-Stokes equations can require
large amounts of computer time and memory. One assumption often made to
reduce the cost of a solution is to neglect all viscous terms which
contain derivatives in the direction parallel to the body. The original
development of this idea is presented in Reference 18. This assumption
is justified since these terms are substantially smaller than the terms
with derivatives normal to the body. Also, it would be impractical to
think a grid could be refined enocugh in the direction parallel to the
body to resolve the diffusive terms in this direction. The solution of
the TLNS set of equations has an advantage over the boundary-layer
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equations, which assume also that the normal pressure gradient is
negligible. Therefore, the thin layer Navier-Stokes equations (TLNS) are
capable of handling flow separation and reverse flow regions with no

special considerations necessary.

After the curvilinear coordinate transformation, the Navier-Stokes

equations have the form

dQ . dF _ dG _ gH
= - =0 (2.9)
T a * an * a¢

where the vectors Q,F,G, and H are defined in Apperdix A, Bquation (A.9).
If the thin layer assumption is made for the solid surface to exist on a
constant y grid line, as is normal for a "C type" numerical grid, then
viscous terms inside the F and H flux vectors are neglected along with all
the terms in flux vector G which contain derivatives with respect to
either ¥ or {'. This results in the thin layer Navier-Stokes

equations as follows

Q9+£+~a—c-;+§§=0 (2.9)
A R S | T [
where,
F'p T
pu

pW
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F=J
G=J
H=J

"

—
-

r— —

L<e+p>W - (,p_

pU ]
pull + & p
pvU + & p
pwl + & p
(e+p U - Ep

pV
puv +qp - T

~

~

pvv + np - T,

pwV +np - T

(epV - np -uT,, -vT,, - wT,, +T,

b

pW

puw + ¢ p
pvW + {p
pwW + T p

U=§ +Eu+Ev+Ew
V = Notnu AV AW
W =g +§xu+§yv +{w

T, =0T,
TTW - x Xy
Tnz = nXT:(::

[y=mna +ng +ng

1"

T 0T,
+ +
nTt T]yTYY "zTXY

T YT

(2.10)

-

(2.11)




Applying the thin lay=r assumption, the viscous stress tensors
described in BEquation (A.10), become ‘

_2aM - _

Ty = 3Re, [2n.u, v, nw,l
_ M, _ -

T, = 3R [211yvn nu, - nw,J

T,. = 3R [mw, - nu, ~nyv,]

4
Ty = FRe MU, *1V,]

- M
T = Fe hu, +nw, ]
WM,
= 2 +
T, = Re, MLV, * W]

and the heat flux terms become
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SECTION III
DESCRIPTION OF SPLITTING TECHNIQUES

3.1 Basic Implicit Algorithm

A comparison of the FVS and FDS numerical schemes referenced in
Section I can be easily understood by considering the one-dimensional
Euler equations

ijJ._Q + E‘j_F; = 0 (3.])
at - Ax

An implicit, finite volume discretization of Bquation (3.1) may be

written as

n+l
AQ" b, F
+ -0 =0 (3.2)
AT AE

where,

AQn = le _ Qn

nt+{
(an/: B Fl-l;’l )

6EFH*| =

Since in the curvilinear coordinate transformation the term A&
can be set equal to one, it may be dropped from the equation. BEguation
{3.2). when solved for AQ", becomes

AQ" = -ATH, F"! (3.3)
Since the flux F is a non-linear function of the dependent variables

(p,pu,pv,pw,e) then, using a linearization first described by

13
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Briley and McDonald'? and Beam and Warming *° where,

F™ = F% + AAQ™ + O(AYY) (3.4)

the first order accurate scheme, O{At), based on the backward Euler

differencing formula, Equation (3.3) is
(T + A7 5,4 JAQ" = -ATH,F" (3.5a)

while a second order accurate scheme, O(At”), based on the three point
backward differencing formula of Equation (3.3), is

(I + %AT ‘SEAH )AQ” - %AT‘SFF“ + :];AQH‘I (3-5b)

Note that the dot( ) indicates the j operator acts on the entire term

,3r(A“AQ‘ ), etc., and the term &', is defined as the jacobian
of the flux vector

_F
40

3.2 Flux-Vector Splitting
The eigensystem of the flux jacobian matrix A is necessary to
achieve the desired splitting. The flux jacobian matrix can be

diagonalized as detailed in Reference 21. The resulting diagonal matrix

A has the eigenvalues of A as its diagonal elements,
A = TAT ! (3.6)

where T is a matrix whose columns are the right eigenvectors of A, and
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T "!'s rows are the left eigenvectors.

The one-dimensional Euler equations have three real eigenvalues
associated with the jacobian matrix A. The eigenvalues are the
characteristic velocities of the system. The flux vector F can be
written as the sum of two subvectors. The subvectors are written with a
superscript (+) which indicates the portion of the flux vector resulting
in nonnegative eigenvalues and superscript (-) which indicates the

portion of the flux vector resulting in the nonpositive eigenvalues

F=F' +F (3.7)
where
s / -t i
A =L§__2L\_’ (3.8)

which allows the split flux jacobian matrix A" to be defined

¥

ATy T (3.9)

Since the flux vector F is a homogeneous function of degree one in Q
then

F'=2a9Q (3.10)
The splitting of the flux vector F described above is the flux vector

splitting of Steger and Warming *.

An upwind first order spatially accurate scheme using the splitting

described can be constructed as
15




F =F" + F~ (3.11)

=) (F +F,) - (A0, - IAlQ)

where

van Leer'? has pointed out that many numerical fluxes may be

written in the form
Filope = %(Fi +F,y) ‘% D(Q,,Q,,, ) (0., - Q) (3.12)

and the freedom of choosing a numerical flux formula essentially lies

in the choice of the matrix coefficient, D(Q,,Q,,,) of the

dissipation term.

The dissipation matrix corresponding to the Steger-Warming splitting
has been shown to contain too much numerical dissipation. The result of
this additional dissipation is a smearing of shocks and contact

discontinuities.

3.3 Flux Difference Splitting

The flux vector split scheme described above has been described by
Barth*" as being a "point-by-point splitting” or in other words a
flux vector at a given point is split without concern of the state of its
neighboring points. In contrast to this idea, the flux difference split
scheme referred to in Section I is based on the "interaction" of
neighboring points through an approximate solution to the Riemann
initial-value problem. The FDS scheme used in this work was based on
Roe's approximate Riemann solver which uses an intermediate state of the

16




dependent variables Q to determine the matrix coefficient A((Q) of
the dissipation term described in BEquation (3.12). The numerical flux

formula for the Roe type scheme is

‘l -—

Fian = 2(F1 +F,) - lAl1+1/2(QI+l - Ql) (3.13)
Roe 5 required the matrix A(Q,,Q,,,) to have the following list of

properties, which he calls Property U since it ensures uniform validity

across discontinuities:

(i) It constitutes a linear mapping from the vector space Q to
the vector space F.

(ii) As Q, —» Q,, — Q, Then A(Q,,Q,,) — A(Q), where A = %

(iii) For any Q, Q,,, A(Q,,0,,) - (Q,, - Q) = F,, - F

(iv) The eigenvectors of A are linearly independent.

Property (ii) ensures that the approximate solution approaches the exact
solution as the mesh size is decreased. Reference 10 points out that
Property (iii) results in the fact that if the eigenvalue of A(Q Q)
vanishes then the correspording eigenvalues of the dissipation matrix

|A) vanish, since the eigenvalues of |A| are the absolute value of

the eigenvalues of A. Since the numerical dissipation vanishes, this
results in nice sharp modeling of shocks or contact discontinuities as
opposed to the Steger-Warming FVS scheme in which the eigenvalues of the
dissipation matrix of |A|] become discontinuous whenever the corresponding

eigenvalues of A vanish.

Let )\', j=1,2,...m be the eigenvalues of the Roe matrix A and
17




r’ be the right eigenvectors and 1' be the left eigenvectors such that
1V and r! are orthonormal then

1A -\71 =0 (3.14)

and
(A - )11 =0 (3.15a)
1ME-)\'1) =0 (3.15b)

Jeffery 2? (see Chapter 2) has shown that the change across
each characteristic curve associated with a specific }\j is proportional

to the right eigenvector r! associated with that eigenvalue of the Roe

matrix A

m
0, -9 = a'rj (3.16)
=1 )
Jeffery has also shown that
20! = Vag! (3.17)

Therefore, extension to the one-dimensional Euler ermations results in

Fl+l - FI = K(Ql 'Q]Q] ) ¢ (Ql*l - Ql) (3-188.)
m
= San'd (3.18b)
=t
m
= \af! (3.18¢)

where df! is the change in a flux vector across each characteristic

curve associated with the eigenvalue )\' .
A numerical formula for the flux vector at a cell interface i+1/2 for
18




the ocne-dimensional Euler equation might be

m
F = Fl + Z(N'k-JrJ (3.19)

j=1

1+1/2

where the (-) superscript on )\, indicates that only characteristic
curves associated with negative eigenvalues (i.e., nonpositive slope in

Figure 3.1) are used.

N
> X
Figure 3.1 Characteristic Waves
Ancther flux formula is
4L i
= o
Flae =Fa - ST (3.20)

f=1

where the (+4) superscript on )\ indicates that only positive

19




eigenvalues are used. Finally, a third flux formula is obtained by
averaging Equations (3.19) and (3.20)

m
Flo = %(Fl +F) ’% Eozj[)\llrj (3.21)
)1

The flux formula given in BEquation (3.21) can be interpreted to be
in the form described by Bguation (3.12) by letting

¢ = (A (Q,, -9) (3.22)

and from Bguation (3.16)
N ]

The Roe matrix A is diagonalizable just as the flux jacobian
matrix A for the FVS scheme is in Bguation (3.6), so that

&) = TA" - AT (3.24)

m
¢ = ST - A )'r"ajrJ (3.25)
j=1

Equation (3.25) can be shown to reduce to the following (see Reference 3)

m
d = Zuj”\J‘rJ (3.26)
=1

Therefore Equation (3.21) can be written as

1 1%
Fi.2 =5(F +F, ) -5A . (Q, -Q) (3.27)
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The extension of both of these schemes (FVS and FDS) to higher order
accuracy and full three-dimensional equations is considered next. The
discussion will deal with the set of equations as though they were purely
hyperbolic partial differential equations (i.e., 3-D Euler equations).
This is possible by treating the diffusive flux terms explicitly and
therefore placing them on the right hand side of Equation (2.9) as source
terms. The details of this explicit treatment of the viscous flux terms

are discussed in Section IV.

3.4 Flux-Vector Splitting for Three Dimensions

Since the viscous flux terms are to be treated explicitly the
remaining terms form a set of hyperbolic partial differential equations
characterized by a limited domain of dependence. The solution at a point
is not dependent on every other point in the field and information
travels only in certain characteristic directions. If a numerical scheme
is selected to take advantage of this fact, then information for
numerical differencing is taken only from the direction from which
information is propagating (i.e., upwinding). The use of upwind
differencing normally alleviates the necessity for adding numerical
dissipation to smooth the results near discontinuities such as shocks.
This becomes apparent when one considers the discussion in paragraph 3.1
concerning the nature of the dissipation matrix at or near
discontinuities. The details of the upwind, finite volume, flux-vector
split scheme for the three dimensional Euler equations have been reported
many times (References 3,7,9,and 21), and thus only the highlights will

be provided here.

The flux jacobian matrices A,B, and, C for the three-dimensional
21




unsteady Buler equations are

JF
A=
10
Bza—G
30
JH
CE =
dQ

The eigenvalues of the flux jacobian matrices are the characteristic
velocities in the three coordinate directions. The flux vectors F,G,and,
H can be written as the sum of two subvectors as shown in Bquation (3.7)
for the one-dimensional equation. The subvectors are written with a
superscript (+) which indicates the portion of the flux vector resulting
in nonnegative eigenvalues and superscript (-) which indicates the

portion of the flux vector resulting in the nonpositive eigenvalues

F=F'"+F"~
G=G"'"+G-~ (3.28)
H=H"+H"

Each of the split flux vectors are linearized the same as described in
Equation (3.4)

+n

=F" + AAQ" + O(AL) (3.29)

F' =F 7 +AAQ"™ + O(At®) (3.29b)

n+l _n+l

and similarly for G .G H *n”, and H "',

The split flux jacobians are now defined as the true jacobians matrices
obtained by differentiating the positive and negative flux vectors
22




instead of the splitting defined in Equation (3.9)

A" = ggw (3.30)
x O
JQ

and similarly for B*,B7,C*,and C~. The derivation of these split
flux jaocoljian matrices are given in excruciating detail for dynamic grids

in Reference 2.

When the split form for the fluxes given by Bquation (3.29) is used,
BEquation (3.5), when expanded to three dimensions, becomes

[+ AT(§FA*-+ 6EA7+ 5nB*-+ 5nB‘-+ 6§Cf+ 6§G)] AQ' = -ATR (3.31a)
and
R' = (6EF‘ + ﬁgF" + (SnG+ + 6“G’ + 6§,H’ + 6{[{) (3.31b)

The flux vector splitting results in a seemingly simple expression
but one which proves impractical to solve for most problems of any
practical size due to the wide bandwidth of the matrix system. Many
different factorizations have been used for this system by Whitfield’.
The factorization used in this work was the two factor scheme, in which
all terms corresponding to nonnegative eigenvalues (+) are lumped
together and all terms correspording to nonpositive eigenvalues (-) are

lurped together.

(1 + AT(E,EA‘w~ 6nB’-+ 6(C'~ )]

[T+ AT(5, A%+ 5 B+ 5.C)] AQ' = -ATR (3.32)
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The factorization error created is no larger than the linearization error
already inherent in the scheme, O(At?).
The solution to Bquation (3.32) is carried ocut as follows

[z + AT({,EA‘- + 6nB Yoo+ 5§c*- )] X! = -A7R" (3.33a)
[1+ AT({,EA*- +§ B +5.C )} x2 = X! (3.33b)
AQ" = X? (3.33¢)

The solution of Equation (3.33) results in two passes through the
computational field. The first pass, Equation (3.33a), solves a sparse
block lower triangular system and the second pass, Hguation (3.33b),
solves a sparse block upper triangular system. This results in a very
efficient numerical scheme since only forward and backward substitution
are required and not a matrix inversion.

Now only a description of the central difference operators in
Bguation (3.33) is needed to complete the description of the flux vector
split scheme. Since the scheme is finite volume, deperdent variables are
known at cell centers; however, the central difference operators
represent flux differences at cell faces. The value of the dependent
variables at cell faces are determined by an extrapolation. For a
positive extrapolation a value at the cell face labeled (i+1/2,3,k) is
determined from

Qe = %Qq - %Q.-; + 0(AE®) (3.34a)
or

Q' = 0 + O(AY) (3.34b)
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and for a negative extrapolation

Qe = %Qm - %Q“z + O(AEQ) (3.35a)
or

Quyn = Q. +0(AE) (3.35b)

The first order extrapolations are used for the difference operators
on the left-hand (implicit) side of BEquation (3.33) where only first

order spatial accuracy is necessary since for steady results AQ'—O0.
The second order extrapolations are used on the right-hand (explicit)
side of Bquation (3.33) to give a second order spatial accurate scheme.

In order to evaluate the split flux difference terms in the residual
vector, Bquation (3.31b), using F* and F~ as examples, a set of positive
eigenvalues, }\l(Q*), and positive split fluxes, F‘(Q*), are found using
the dependent variables described in Bquation (3.34), where F, (Q) is the
camponent of the flux, F, associated with the eigenvalue }\l .

Similiarly, using Fquation (3.35) a set of negative eigenvalues, )\I(Q‘),

and negative split fluxes, F,(Q7), are determined.

The total flux through a cell face (i+1/2,3j,k) is determined

using
Bl =F" +F°
S
F‘z'lz; O\, (@) + 1\, (@] F Q) (3.36a)
and
5
Fo=g ™ D@ -1\ @ITE Q) (3.36b)
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The numerical scheme described here has been labeled BMULE (Brown's
Mrle) by Whitfield’,

3.5 Flux Difference Splitting for Three Dimensions

The FDS scheme used here has been described in detail by Whitfield’
for application to the three-dimensional Euler equations. The FDS scheme
of Roe is based on an approximate Riemann solver which solves the linear
Riemann problem (shown in one-dimension, where A is the jacobian

matrix).
LA ! (3.37)

The flux formulas discussed in paragraph 3.3 can easily be extended
to threedimensions by splitting the wave into the three curvilinear
coordinate directions since the eigenvalues are dependent on the
contravariant velocities normal to a cell face. The wave motions are
split based on these eigenvalues resulting in a set of equations in which
the wave motion is normal to the cell interface just as though they were

a set of one-dimensional equations.

The jacobian matrix f\(Q1 'Qm) is evaluated using a set of
special averaged values. The "Roe averaged" variables for the three-
dimensional Buler equations are

i

AL

= 'J—p-lui * pmu“l
R

A I

vV = ,j_p' " J[J—— (3.38)
t 1+1
- Jp—iwl * p“]WHI

oot
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a2 = YP _ (y=1) h _%(uz + v+ w?) (3.39%)

e = ’)71):1 +aplu? +v? o+ w?) (3.39%)

where h is the total enthalpy. Roe and Pike <4 have shown that these
averaged variables are the only ones having the required properties to
satisfy the Property U requirements. The details of the derivation

of the "Roe averaged" variables are given in Reference 5.

An implicit algorithm using the flux difference described in
Bquations (3.19) and (3.20) is obtained by linearization of the first
order flux. The metrics, denoted by M, are included in the expansion of
the flux vector and the jacobian ma*rix in order to note the spatial
location that the metrics are to be evaluated. Also, noted as a
superscript is the time step to which the metrics correspond, this
becomes important for calculations using dynamic grids. Bguations (3.19)
and (3.20) are written in the following form using the same development

as described in Reference 3, where

= n+l

— n+l A n+_ n+{
L, =EVL+ A (0 Q™) (3.40a)

f+1/2 I+ |

F™ - F™ AT (O™ -Q™!) (3.40b)
1-1/2 i i-1/2 i i-1
A formal linearization of Roe's numerical flux (Equation (3.40) is
extremely complicated as recognized by Barth’™™. An assumption often
made to simplify the linearization is to neglect the spatial derivatives

of the Roe matrix A . If this assumption is made then the
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linearized flux difference at cell i is

= n+l 5 N+l sn = n I - T+
F - F = F - F" + 2a AQ" - A A Q" +
i+1/2 i-1/2 f+1/2 i~1/2 {+1/2 f+1 i-1/2 1-1

n n+| - x - n n+i F n .41
[A(Ql’ Ml*l/Z) AI*I/Z A(QI' Ml—l/Z) + AI-I/ZJAQI (3 )

If the locations of the metrics in the jacobian metrics A are
neglected then Bquation (3.41) results in

= n+l 0+l =n _ §n T - n _ ¢ n
F1+l/2 Fl—l/z - F1+1/2 F1—1/2 + Anl/z AQH; A¢_|/2 AQ;-| +
- — A
- &, ., .00 (3.42)
or if
6(AAQ)R = Agn AQ‘Tl - A n AQT (3.43)
then
= n+1 = n+l _ =n _ =n - - n - n
14172 1-172 2 E;-l/z +0A AQ" +HA AQ (3.44)

The remaining two flux terms, G and H, follow in a similar manner.
Therefore, Equation (3.5), when expanded to the three-dimensional Euler
equations for the FDS scheme, results in

[T+ AT(5, B+ §, A0+ b B+ 5 B+ 5.C+ 5.C)] A = -ATR (3.452)
and

R = (,F +5,F +5,G +5,G +4H +dH) (3.45b)

Note that Bquation (3.45) has the same form as BEquation (3.31) from the

flux vector split form of Hguation (3.5), however, the flux jacobian

matrices in Bquation (3.45) are the Roe matrices, and the jacobian

matrices in Bguation (3.31) are the true partials of the positive and
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negative flux vectors. Solutions to Equations (3.31) have becen obtained
but as noted in Reference 3, in all cases tested improved results and
convergence rates were obtained from solving Bquation (3.31a) but using

the residuals from BEquation (3.45b)

(I + AT(,SEA*-+ ,SEA‘~+ 5”8*-+ 5”5-4» {)rC’-+ ,3(“(?)] AQ' = -ATR (3.46a)

R = (3,

Fr+d,F +5G6 +5C +5H +5.H) (3.46b)
Therefore, the implicit solution from the FVS scheme is used with the

residuals for the FDS scheme.

The reason for the improved results using the implicit portion of
the FVS scheme, Equation (3.31a), instead of the implicit portion of the
FDS scheme, Hquation (3.45a), is due to the fact that approximated flux
jacobians are used for the FDS scheme while, the FVS scheme uses the true
partials of the flux split jacobians. Any approximations for these flux
jacobian terms have nearly always degraded the convergence rates of the

solution.

The numerical fluxes discussed in paragraph 3.3 are only first order

accurate in space. Higher order methads used here (second and third
order) are due to Osher and Chakravarthy 5. The implementation of the

higher order methods is described by Whitfield ? (refer to BEgquation
(54)).

Using Bquation (3.19) for the first order flux, a secord or third
order scheme for the flux at cell interface i+1/2 may be obtained by
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adding a correction term. If all "Roe variables" and metric terms used
in cawputing the eigenvalues and eigenvectors are evaluated at the cell
face i+1/2, then the higher order flux formula becomes

m
F. .. FIQ), .+ N - r! +
+1/ RIRYE r_..]. 0"“1‘,2 i+1/2
m 1_1p
N A7 [LJ(—?,l) —Lj(3,1)] + (3.47)

de' .\ _ - . |
o [Lj(l, 1) Lj(l,a)]} r!

where
h i‘,
B ' (3.48)
0_|.1+p/2 R|+1/: "Y.I.hp/:
and
= | - 3.
0lj.!»l/: lm,,: (QI QH) (3.49a)
= ! _ 3.
¥ e li¢|,/2 (Om Q) (3.49b)
Q = i (Qlw_ Q|+|) (3.49)

yoieds2 f+1/2

Two flux limiters were tested in this work; they are defined as the
mirmmod and superbee limiters:

L' (1,n) = minmod ( g° , b gt ) (3.50a)
| jol+s2 j.t+n/2
mimmod(x,y) = sign(x) max {0,min[|x|,y sign(x)]} (3.50b)
b=o ¥ (3.50¢)
—y

The minmod limiter, where b is the cowpression parameter, uses two
arquments, x and y. When these arguments are of opposite sign the value
returned is zero. When they have the same sign the value returned is the
smaller absolute value. The minmod limiter uses as its two arguments the
unlimited flux value at a cell interface and compares this value with the
product of the compression parameter and the flux value at the
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neighboring interface on either side. When these values have the same
sign then the value returned is nearly always the unlimited flux value
since the compression parameter used in these calculations was large (two
for the secord order scheme and four for the third order scheme). Points
in the solution where these values might have different signs are the
maxima or minima of fluxes (i.e., shocks or strong gradients). 1In these
cases the unlimited fluxes can easily have different signs, in which case
the minmod limiter returns a zero and the solution reverts to first
order.

The superbee limiter used in conjunction with Bquation (3.47) is
simply
L";(l,n) = Lt'(n,l) (3.51a)
L' (1,n) = aplim (  g° ., ot ) (3.51b)
} Jo14172 i, i+n/2
aplim(x,y) = sign(x) {max 0,min[] x| Py sign(x)] ,

min[f}}x| /Y sign(x)]} (3.51c)

where ﬁ is the camwpression parameter, which was set to 2 for all

results shown here.

The second order truncation error is presented for several

carbinations of lp and b in Table I from Reference 13.
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SECTION IV
THIN-LAYER NAVIER-STOKES ALGORITHM

4.1 Explicit Treatment of Viscous Terms
The diffusive terms may be written as separate vectors in the thin-

layer Navier-Stokes equations, Bquation (2.9) becomes

8Q+£+3(G—S")+E_§=0 (4.1)

ar A an I

where
— -
0
T,
s, -0 |1,
(u';‘nx + v‘f‘rw + w‘i.lz - [“n)
L -
and 'E‘ (k=x,y,or z) are defined in Equation (2.11).

nk

Since the S, vector is made up of diffusive terms which do not
have the characteristics of a set of hyperbolic partial differential
equations in which a set of characteristic velocities exist, it is
impossible to split the diffusive terms into subvectors associated with
any characteristic velocities and impossible to upwind difference these
terms. Therefore, the inclusion of these terms into the left-hand side
of either Bquation (3.31) or Bquation (3.45) would destroy the efficiency
of the upper and lower triangular matrix solution, by requiring a central
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differencing of these terms. In an effort to include the effects of
viscosity ard yet maintain the efficient structure of the algorithm
Gatlirf has for stationary grids neglected the inclusion of the viscous
flux jacobians in the left-hand side thereby treating the viscous terms
explicitly. The result is the viscous terms at each iteration (n+1) are
evaluated using the information (dependent variables and metrics) from

the previous iteration (n).

An implicit, finite volume discretization of Equation (4.1) with the
viscous terms becomes

AQ\ . 6Fn+l . 6Gn+l N 6H n+| ) 6svn*l

(4.2)
AT AE An AT Ay 42

However, instead of the linearization of Equation (3.4) for the viscous

terms, they are linearized as
s™! = 8" + O(At) (4.3)

The remaining fluxes are split and then linearized according to Equation
(3.29) and the equation is factored into two factors in the same manner
as described for Equations (3.33) as

1+ AT(6FA*- + E,HB*' + 6CC' )]

1+ AT(E,EA‘- + ,3”13'- +6,C" )] AQ" = -ATR (4.4)

except now the residual term includes the viscous fluxes which contain
derivatives with respect to the normal to solid surfaces,
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R = (5EF‘ + 5nG“ + 5{5!“ + ﬁnS‘v) (4.5)

The residual vector in BEquation (4.5) can be used in either a FVS
(Bquation (3.31b)) scheme or a FDS (Bguation (3.45b)) scheme. This
implementation maintains the solution algorithm efficiency of the
original Buler algorithm (average increase in computational time is less
than 10%) while including the viscous effects neglected in an Euler
algorithm. Gatlin® has shown this algorithm to give reasonable
engineering solutions for high Reynolds number flows when used with the
FVS scheme for stationary grids. Results will be shown in this work for
both FVS and FDS schemes and for both stationary and dynamic grids. The
method used to evaluate the viscous flux terms has been described in

detail by Gatlin® and is not repeated here.

4.2 Boundary Conditions

All of the boundary conditions used have been applied explicitly.
The bourdary conditions are implemented using one layer of phantam points
outside of the computational field, which results in a first order in
space extrapolation at the boundaries and enhances the vectorization of
the computer code. The phantom points at farfields are set to enforce a
certain condition (supersonic or subsonic inflow or outflow) at the cell
face, which is on the boundary, while at solid surfaces they are set to
enforce the no-slip condition. The change in dependent variable, AQ',
is set equal to zero for all boundaries except at block boundaries.

All farfield and downstream boundaries used characteristic variable
boundary conditions as derived in Reference 21 for stationary grids and
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Reference 2 for dynamic grids. Characteristic variable boundary
corditions are designed to allow information to flow into or out of the
camputational field as dictated by the signs of the eigenvalues.

The bourdary conditions for impermeable surfaces are set using a no-
slip implementation of the zero pressure gradient boundary conditions.
These boundary conditions have been adapted for dynamic grids by observing

the grid speed _X-)b and the equations

= (4.6a)
p =0,
= (4.6b)
pp P,
v, =2%, -7, (4.6c)
- ] 1 2 2 2
e, pp+-2-w~_—ﬂpp(up+vp+wp) (4.6d)

where, the subscripts p, £, and b, denote phantom points, field points,
and bourdary points respectively. Figure 4.1 shows graphically the
implementation of no-slip condition for a cell centered formulation.

<}

7
/
/
/

Figure 4.1 No-slip boundary conditions for dynamic grids.
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Finally, the block-block boundary conditions were derived by Belk ?
for both stationary and dynamic grids. To sumarize the discussions of
different block-block boundary conditions, many combinations of treatment

for AQ" anmd dependent variables at block boundaries exist. Those

used for the re-ults chtainad here vere, two phantom points, AQ

2

approximated (which results in local truncation error of O(AAE( ),

see Belk ?) and synchronized dependent variables.

4.3 Turbulence Modeling

The numerical solution of the Navier-Stokes equations (BEquation 2.1)
for turbulent flows require the viscosity to be determined by the
relation

L=t (4.7)

where || is the molecular viscosity and i, is the eddy viscosity
1]

and is supplied by the turbulence model. Similarly, the thermal
ocorductivity is determined by

K=K +K (4.8)

where K is the laminar conductivity and is obtained from

K = mro (4.9)

vhile W, is the turbulent conductivity determined from
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t
P_ry——ﬂ (4.10)
where Pr=0.72 and P”=0.90 for air.

Since the configurations studied here are airfoils and wings with
little or no flow separation, the Baldwin-Lomax 26 turbulence model was
selected. The Baldwin-Lomax turbulence model is a two-layer algebraic
eddy viscosity turbulence model which uses a simple algebraic expression

to detemine a value for 1l in the inner layer nearer the wall
1,1
and I, in the outer layer. The Baldwin-Lomax model has the advantage
,0

of not requiring the determination of the edge of the boundary layer but
relies instead on the vorticity profile to determine the it for the
t

inner region:

ul" =p12|w| (4.11)
where

1 =kY[" - exp(-¥*/26)] (4.12)

Y =Ym/uw (4.13)

@ is the vorticity, Y is the normal distance from the solid surface,
K=0.4 is the von Karman constant, T, is the maximum of T,

and T,/ where 1 is the wall shear stress and T, is the maximum
w

shear flow in a local velocity profile. The results of the selection of 7
m

in the flow solution is discussed by Gatliné®.
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For the outer region the eddy viscosity is given by

feb

uLO = KCWE;E{

where Ccp=1.6 is a constant and K=0.0168 is the Clauser constant.
F .. 1s the maximum of the profile F(Y) given by

ma

max max’

FW = min (Y F Cakxnax [‘Lz”/Fmax)

F(Y) = Y|l [1 - exp(-Y'/26)]

Y., is the y value at which F,

max

occurs. C,=0.25
is a constant. F,,,, is the Klebanoff intermittency factor
determined from

E,,.,(Y) = [1+5.5 (%)ﬁ]-'

ax

where C,.,=0.3.

Uy ;¢ was defined by Baldwin and Lomax as the difference

between the maximum and minimum velocity magnitudes in a profile

Uy = (U2 +v2 2w?) - U w? +wd)

min

4.4 Time Accuracy and Subiterations

Calculations of unsteady aerodynamics requires a time accurate

(4.14)

(4.15)

(4.16)

(4.17)

numerical scheme in which each grid cell is advanced in time an equal

amount (i.e., minimum time stepping). The size of a time step is limited
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by the Courant-Friedrichs-Lewy number (CFL), which is the number of cells
across which a characteristic wave will propagate in one time step. If
steady state solutions are of interest then it is possible to update each
grid cell by an amount in time which places that cell at an optimum CFL
number for convergence (i.e., local time stepping). This is not time
accurate since each grid cell will be at different time levels, but this
does not matter when a steady state solution is being sought where AQ'—O0.
All the steady calculations presented here resulted from local time

steps, while all the unsteady calculations resulted from minimum time

steps in which each grid cell was updated the same increment in time.

The use of minimum time steps can be very expensive for viscous
solutions since grid c~1ls near solid surfaces are very small compared to
grid cells in outer regions of the flow field (6-7 orders of magnitude
difference in cell volumes). This means very small time steps must be
used over the entire flow field for minimum time stepping to maintain a
reasonable maximum CFL in the grid cells near solid surfaces. 1f a
maximm CFL of 100 is occurring in the grid cells near a solid surface
then, most of the flow field is being advanced in time with CFL's of much
less than one (CFL = 0.001-0.00001).

Belk ° has shown good inviscid unsteady results using this FVS
scheme for an oscillating airfoil in transonic flow using a maximum CFL
of approximately 100. To obtain a maximum CFL of 100 on the inviscid
grid it was necessary to take 500 time steps per cycle of oscillatory
motion of the airfoil. To obtain the same approximate maximum CFL (100)
on a viscous grid would require approximately 500,000 time steps for one
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cycle of motion. Obviously unsteady viscous calculations for maximum CFL
nurbers on the order of 100 are very expensive and are not practical even
on today's fastest computers.

If unsteady viscous calculations are to become a practical tool for
use in design and analysis of transonic fighter aircraft and weapons then
it will be necessary to reduce the number of time steps needed for a
calculation (i.e., increase the max CFL allowed). With this implicit
algorithm a linear stability analysis indicates an unconditionally stable
scheme. Gatlin® discusses stability concerning the explicit
treatment of the viscous terms. His linear stability analysis indicates
the scheme maintains its unconditional stability for high Reynolds number
flows only. For unsteady problems it is not enough to simply remain
stable, one nust also maintain time accuracy when using these large CFL

numbors.

A test case used to study the effect of CFL on stability and time
accuracy was the NACA 0012 airfoil oscillating in pitch abwt its quarter

chord point in transonic conditions. The conditions used in these
calculations were taken from the experiment by Landon’?, with Mach
number of 0.755,™mean angle of attack, N, of 0.016°, an unsteady

angle of attack amplitude, 0,0 of 2.51°, and a reduced frequency

or Strouhal number, k, of 0.1628 based on chord length,

,r

I}

pe
>

(4.19)

<=

0
where
I
w = frequency

¢ = chord length
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/\\/00 = freestream velocity

The angle of attack of the airfoil was varied according to

i) = o 4y sin((Ht) (4.20)

Unsteady viscous calculations for the NACA 0012 airfoil at these
corditions were made for different time step sizes to determine the
effects of large CFL numbers on unsteady viscous calculations. All of
the NACA 0012 calculations presented were obtained using a "C" type
numerical grid shown in Figure 1 with 221x40 points. The grid was
generated using the Numerical Grid Generation Code - EAGLE written by
Thampson (Reference 28). A great deal of effort was expended to generate
a grid which had as much orthogonality as possible at the airfoil surface
(see Figure 1.b), since the FDS scheme was found to be very sensitive to
orthogonality. The spacing set for the first point off the body was
0.000001 which gave approximately 15-20 grid cells inside the boundary

layer ard resulted in a minimum Y' of much less than 1 (actually 0.1)

over the entire airfoil.

The unsteady calculations were performed by first obtaining a steady
solution for the airfoil at the mean angle of attack, (v = 0.016".

The motion was impulsively started with the angle of attack varied
acocording to Equation (4.20). The entire grid was oscillated as a rigid
body. The pressure distributions for sevaral different time step sizes
are presented in Figure 2. These pressure distributions are "snap-shots”
of the pressure in time as the airfoil is in motion. The airfoil is at
the 60° of motion point which corresponds to an increasing angle of
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attack through 2.20°. The small time step size DT = 0.00102 was used

as a reference time step to compare with other results in order ito check
for time accuracy. As the time step increases the solution deteriorates
to the point of being unusable even though the solution did not "blow-up”
and continued for a camplete cycle. Table I summarizes the results in

Figure 2, two additional time step sizes have been inciuded in Table II

for comparison purposes.

The results shown in Figure 2 certainly indicate that if unsteady
viscous calculations for the oscillating airfoil are to be practical or
affordable, additional considerations must be made to allow caiculations
on the order of 1000 time steps per cycle of motion or less. An approach
taken to help in this cause was a use of Newton iterations to converge
the solution at each time step before updating to the next time step.
These Newton iterations, referred to here as subiterations, have been
tried successfully by others (see Reference 17), but not with the two
algorithms described in paragraphs 3.1 and 3.2 and not with the explicit

treatment of the viscous terms.

The implementation of subiterations into the scheme described by

Bquations (3.31 or 3.46) is a simple additional term added to the right-

hand side and a redefinition of AQ' on the left-hand side. Using
the FVS scheme as an example (the implementation is exactly the same for
the FDS scheme), one has

(1 + AT(;‘)FA*- + 5”5‘- + 6CC' )]

[T+ A7(5,A~+5 B-+5,.C )] AQ" = -ATR' (4.21a)
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AT R = 'AT[QLA—?Q +(5,F +5 T +5H +5 )] (4.21b)

where AQF is defined as

A =0 - (4.21¢)

where p is the subiteration count. When p=0, QF = Q", and the

system reverts to the noniterative scheme of Bguation (3.31). At

convergence, QF — Q™!. Note that in this case the viscous terms
are not time lagged. The normal operating procedure was to
simply set the number of subiterations desired rather than check the

convergence level after each subiteration.
Oretga and Rheinboldt?? write the Newton iteration in the form

o= - PP )IRXP p=0,1,2,... (4.22)

where k(p) is an integer less than or equal to p. When k(p) is less than
p then the F'(X) is re—evaluated less than each iteration which
translates into "freezing" the flux jacobians. When k(p) = p the
jacobians are evaluated each iteration and BEquation (4.22) results in the

normal Newton iteration

X W - FU(XF)IF(X)F p=0,1,2,... (4.22)

When k(p) = 0 the jacobians are never updated and Bquation (4.22) is then
referred to as the simplified Newton method
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=% - F () 'FXP p=0,1,2,... (4.23)
The significance of freezing the jacobians and the resulting
sinmplified Newton method is a tremendous savings in computations since
the cost to recalculate the flux jacobians is between 40% -~ 45% of the
cost of doing an entire iteration. Both methods were tried with no
noticeable differences in the results, therefore, only the simplified
Newton method results will be reported on.

Pressure distributions for the NACA 0012 at 60° motion are shown
in Figure 3 for two time step sizes. The smaller time step size, DT =
0.0511, (see Table III for a description of the conditions for the
subiteration check cases) shows some moderate wiggles for the zero
subiterations while for only four subiterations the solution is much
smoother and is suitable for determining the 1lift and moment coefficients
for use in design and analysis studies. However, for the larger time
step size, DT = 0.2044, the original solution without subiterations is
very irreqular and even after 32 subiterations the solution still shows
(Figure 4) a significant number of wiggles. The solution could be
smoothed but would require numerous subiterations due to the slow

convergence rates for the subiterations and would not be cost effective.

The idea of using subiterations for unsteady calculations was to

converge the solution at each time step and therefore allow for much

larger time steps sizes. However, Swanson and Turkel’® have

reported on the problems of converging solutions with numerical grids
designed for viscous flows which have a large variation in grid cell
aspect ratio between grid cells near a solid surface and grid cells in
the far field. A solution for the convergence rate problem in
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subiterations which worked well was to use the idea for accelerating
steady state convergence, that is local time stepping.

Local time steps used for the subiterations seemed to have a
tremerndous inpact on the convergence rate for the subiterations. The
local time steps were implemented such that the overall time accuracy of
the minimum time step iterations was preserved. Bguation (4.21b) then
becomes

AT R = ‘AT,oca,[%T_—@ +(§,F +5.@ + 58 +5 )] (4.25)

min

The result of using local subiterations, Bquation (4.25), was a
significant increase in the convergence rate for subiterations as long as
the CFL for the local subiterations was small enocugh to maintain
stability. Numerical experiments showed that the local CFL must usually
be less than one. This fact would eventually became the Achilles heel
for local subiterations since, determining the optimum local CFL number
which allowed the Newton subiterations to remain stable and still
converge rapidly, proved to be extremely difficult. A method guaranteed
of selecting the optimum local CFL number was not found; however,
provided a proper value for the local CFL was found the local
subiterations converged faster than the minimum time steps.

The pressure distributions in Figure 5 show very smooth results for
time step size, DT = 0.05111, using local time stepping subiterations
even for only two subiterations. The results in Figure 6 show much
smoother pressure distributions for time step size, DT = 0.2044, than
did the minimum time steps (Figure 4). Even though there is a
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significant amount of ringing near the shock, this solution would seem to
be sufficiently smooth to give reasonable engineering answers for lift

and moment coefficients.

Fiqure 7 shows a comparison for the time step size, DT = 0.05111,
with 4 minimum subiterations and 4 local subiterations. The results are
very similar for the two cases. However, both subiteration cases show
the shock wave farther aft than does the smaller time step size with no
subiterations. Since the shock is still building in strength and moving
aft, the larger time step size shock position is said to be "leading" the
smaller time step size. This situation was consistently observed for

these large time step size calculations.

The time accurate calculation of unsteady aerodynamics would at

first glance seem to require a second order temporal accurate scheme.

However, Belk ¢ has shown that for Euler calculations on oscillating
airfoils and wings there is very little difference between solutions
obtained with a second order accurate scheme and those obtained using a
first order accurate scheme. The extension of the Euler algorithm to
include the diffusive terms (paragraph 4.1) requires the diffusive terms
to be time lagged and results in a first order scheme regardless of the
time discretization used. For example, consider the linearization as

described in Equation (3.4)

o= o+ ATAQY + O(AL) (3.4)

When this linearization is used in conjunction with the second order
time discretization given in BEquation (3.5b) the result is a second order

46




accurate scheme. When Bquation (3.4) is used in conjunction with the
first order time discretization given in Bquation (3.5a), the result is a
first order accurate scheme. When the viscous terms are added explicitly

using the linearization given in Equation (4.34), the formal time

accuracy is dropped to O(At) regardless of the order of the time

discretization used, either Bquation (3.5a) or (3.5b).

The use of subiterations would, it appears, alleviate this problem
of time accuracy, since at convergence, the linearization and
factorization errors go to zero. Therefore, using the second order time
discretization described in Equation (3.5b) with subitecations, gives a
secord order accurate in time scheme at convergence. A camparison of a
first amd second order differencing with, DT = 0.0511, is shown in Fiqure
8 using 16 minimum subiteration time steps, which resulted in an order
of magnitude reduction in the residuals. There are some differences,
with the major difference being the shock location. Since the shock at
this point in the motion is still strengthening and moving aft very
rapidly, then, as would be expected, the first order shock position lags

the second order shock position.

The result of these investigations was to help select the time step
sizes, number and type of subiterations to be used for calculations of
the oscillating airfoil and wings for several cycles of motion. Minimum
time step subiterations were used because of the problems of selecting
the local CFL for the local time step subiterations. A time step size
considered appropriate for inviscid calculations was used with 4-5
subiterations, which resulted in a good tradeoff between cost and
accuracy. These results will be presented in Section VI, but first a
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comparison of the FVS and FDS schemes for steady viscous calculations

will be presented in Section V.
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SECTION V
STEADY RESULTS

The description of the splitting techniques in Section III indicated
the FDS scheme based on Roe's approximate Riemann solver should out
perform the FVS scheme (BMULE) based on the Steger-Warming splitting.
Van Leer and Gatlin have pointed out that the numerical dissipation for
the FVS scheme is too large to allow the accurate modeling of flow
discontinuities such as shocks and bourdary layers. In orxder, to
document the effects of numerical dissipation for viscous flow solutions,
several steady configurations were tested to compare the FDS scheme with
the FVS scheme.

5.1 Flat Plate Boundary Layer
The first configquration was a laminar flat plate boundary layer
calculation for Mach = 0.5 and a Reynolds number based on plate length of
Re = 10,000. Flow solutions for a laminar boundary layer on a flat plate
were obtained using two grids. Both grids used 70 points in the
freestream direction with 10 points in front of the plate stretched from
the outer boundary, located 4.0 plate lengths in front of the plate to
the plate leading edge. The next 50 points were uniformly distributed on
the plate, and the last 10 points were placed aft of the plate, stretched
fram the plate trailing edge to S5 plate lengths downstream of the plate.
The two grids differed in the number of grid lines in the normal
direction fram the plate and in the spacing set for the first point off
the plate. The first grid used 20 points in the normal direction with
the first point off the plate set at 0.002 plate lengths (fine grid),
wvhile the second grid used 15 points in the normal direction and the
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first spacing was 0.02 plate lengths (course grid).

The laminar boundary layer profiles are presented in Figure 9 for
the Roe scheme on the course grid, and BMULE on both the course and fine
grids. The calculations are shown compared with the Blasius solution for
a laminar flat plate. The Roe scheme matches very well with the Blasius
solution using the course grid. Note that the Roe scheme has
successfully modeled the laminar boundary layer profile with only three
mesh points internal to the bourdary layer. The fine grid results with
the BMULE scheme do not compare as well as the Roe scheme. The
additional grid refinements did not improve the BMULE results. The BMULE
scheme has too much numerical dissipation to capture the laminar boundary

layer profile, even on the fine grid.

Calculations with the two schemes were also completed for a
turbulent flat plate boundary layer. While the Roe scheme still out
performed the BMULE scheme, the differences were not so dramatic. The
Roe scheame was able to model the turbulent boundary layer with a
relatively course grid once again. However, it was necessary to ensure
that at lease one grid point was inside the laminar sublayer of the
turbulent boundary layer. Therefore, the Roe scheme or the BMULE scheme
requires a spacing for the first grid point off the body to be such that
a minimum Y' (Bguation 4.13) of less than 2-3 occurs. This criterion
was used in the remaining calculations to ensure the turbulent boundary

layers were being satisfactorily modeled.

5.2 RAE 2822 Airfoil
The RAE 2822 airfoil was used as a check case for the thin-layer
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Navier-Stokes algorithms using both Roe and BMULE. The RAE was selected
because of the experimental data’! which exists for pressure, skin

friction, and velocity profiles.

The RAE 2822 is a supercritical airfoil as shown in Figure 10, with
a design Mach number of 0.66. A 221 x 31 X 2 grid was used to compute
the flow for the case presented. The 31 grid points were stretched from
1 x 10 spacing for the first point off the body (close enough to
guarantee a minimum Y* < 1), S5 chord lengths to the front farfield
boundary, and 10 chord lengths to the top and bottam farfield boundaries.
The downstream boundary was set at 15 chord lengths with 30 points in the
wake. The remaining points (160) were spread around the airfoil, with
clustering at the leading and trailing edges.

Flow solutions were obtained for the RAE using the grid described
above for four algorithm combinations. The Roe scheme was used with
mimmod limiter in both the second and third order spatially accurate
mode, and with the superbee limiter, which is second order accurate.

The BMULE scheme was used to compare with each of the Roe scheme
algorithms. The flow conditions for the computation were taken at Mach =

0.73 and angle of attack = 3.19°. The flow conditions were corrected
to account for flow angularity and wall effects to the condition
recommended by Cook et al’!. The calculations were at Mach = 0.734
and angle of attack = 2.79°. The Reynolds number for both the

experiment and the calculations was 6.5 x 10 ®, based on chord
length.
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Figures 11.a - 11.d show the comparison for the Roe minmod limiter
with 2nd order spatial accuracy and the BMULE 2nd order accurate scheme.
Figure 11.a shows the pressure distribution, while 11.b, and 11.c show
comparison of velocity profiles at two stations on the upper surface of
the airfoil. Figure 11.b shows the velocity profile at 32% of the chord,
which is well ahead of the upper surface shock, while Figure 11.c shows
the velocity profile at 57% chord, which is very near the upper surface
shock. Figure 11.d shows a comparison of skin friction between the two
algorithms and experimental data for the upper surface.

Figures 12.a - 12.d ard Figures 13.a - 13.d follow the same pattern
as Figqures 11.a - 11.d, with Figures 12 comparing the Roe minmod 3rd
order scheme with the BMULE, and Figure 13 comparing the Roe superbee 2nd

order scheme with the BMULE schame.

Each of the algorithm cases compare very favorably with the pressure
data (Figures (11 - 13).a). Roe schemes match better in the shock regions
due to the numerical dissipation in the BMULE scheme smearing the shocks.
The Roe superbee scheme was the only one to accurately model the leading
edge expansion for the RAE. However, the Roe superbee did not do as well
in the shock region due to superbee predicting a small shock induced
boundary layer separation bubble, which was not evident in the

experimental data or in the other calculations.

The velocity profiles shown in Figures (11,12,13)b—c are
plotted as UC/Ue (contravariant velocity/contravariant velocity at the
edge) versus the normal coordinate distance from the upper surface. The
edge of the boundary layer was determined to be the cell at which the
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maximum U* and contravariant velocity values occurred. When these
maximum values did not occur in the same gric cell, a simple averaging
was used to determine Ue. As is evident in all the plots, the Roe scheme
is far superior to the BMULE scheme. The BMULE scheme consistently
predicts a thicker boundary layer than that shown in the experimental
data. This again is attributed to the numerical dissipation in the BMULE
scheme. The superbee limiter as discussed above predicts some flow
separation behind the shock which is made more evident by observing the
velocity profile for 57% chord position, Figure 13.c. 1In all other cases
the Roe scheme campares very well with the experimental velocity
profiles, and this is true for these calculations even though the grid
contained 10 less points in the normal direction than did Gatlin's

6 , which would be considered by some as already being a sparse grid.

(See References 32 arnd 33.)

A comparison of skin friction between the Roe scheme, BMULE scheme,
and experiment are shown in Figures (11-13)d. Both the Roe scheme and
BMULE tend to overpredict the skin friction when compared to experimental
data. Most of the calculations match well with the experimental data up
to the shock location, but both schemes tend to greatly overpredict the
skin friction behind the shock. The skin friction data near the trailing
edge for Figures 11.d and 12.d was lost due to a data file transfer
error. Once again the evidence of superbee's separated region behind the
shock is evident in Figure 13.d.

Even though the Roe scheme gives improved results in almost all
cases shown, the improvements do not come cheaply. Figure 14 shows a
convergence history for the two schen.s. Obviously, the BMULE scheme
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converges much faster than does the Roe scheme, so much so that after
only 800 iterations at a CFL = 15, the BMULE residuals are nearly an
order of magnitude smaller than are the Roe scheme residuals. Numerical
experimentation showed that 800 iterations was the minimum necessary to
obtain engineering answers (after which the solution did not change) for
the Roe scheme while only 500 was necessary for BMULE. This translates
into many fewer iterations necessary to arrive at the same convergence
level for the BMULE scheme. When this is added to the fact that the Roe
scheme has a higher operations cost than does BMULE, nearly 20%, since

BMULE runs at 6.185 X 107" CPU sec/iteration/point while Roe runs at

7.417 x 107° CPU sec/iteration/point, it becomes evident the Roe scheme

is much more expensive to use.

5.3 ONERA M6 Wing

The (NERA M6 is a symmetric 12% thick airfoil section with a sweep
angle of 30 degrees. The wing is tapered with a taper ratio of 0.56 and
has an aspect ratio of 3.8. Extensive wind tunnel test data exist for
the ONERA, in particular pressure data for transonic flow conditions
(Reference 34). The ONERA is used here to compare the BMULE scheme and
the Roe scheme with experimental data for a steady three-dimensional

configuration at Mach = 0.84, angle of attack = 3.06 degrees, and Re =

2.6 x 10°.

The grid used in these calculations was a 111 x 40 x 25 "C-O" type
grid. The grid was generated using a distribution similar to that used
for the NACA 0012 airfoil grid described in paragraph 4.4. The upper and
lower airfoil sections in this grid were generated independently with the
first point in the grid (1,1,1) being at the wing leading edge. The grid
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used a spacing 1 x 10° for the first spacing off the body, which
resulted in a min Y ¢ 1 over the entire grid. The outer boundaries
were extended to 10 chord lengths in all directions. Figure 15 shows a
closeup of two K planes (constant spanwise location) and the airfoil
section. The grid was generated by letting the K=1 plane be the plane of
grid points on the upper wing surface at the root section. The K~-planes
were then distributed linearly along the upper surface to K=8 at the
upper surface tip (Figure 15.b). Planes 9 through 17 were then rotated
in a circular arc to model the wing tip, while K-planes 18 through 25 on
the lower surface were distributed linearly from the tip to the root.
This wraparound wing tip grid shown in Figure 15.c, allows the modeling
of the wing tip as it existed in the wind tunnel model.

The test case was run for four algorithms just as for the RAE
airfoil. The BMULE algorithm was compared to the Roe algorithm using the
2nd order mirnmod limiter, 3rd order minmod, and 2nd order superbee
limiter. The test case was a transonic condition which results in a
double shock configuration, which is evident in Figure 16.a at near
midspan point (44%). Figure 16.b at the 65% semispan location also shows
a double shock, but with the separation distance between the two shocks
decreasing. Finally, Figure 16.c shows the pressure distribution at 95%
semispan location, where only a single shock exists in the flow. The
configuration obviously results in the lambda double shock pattern for
transonic conditions on a swept wing, where the two shocks coalesce to
form a single shock near the wing tip. The results follow the same
pattern as the RAE airfoil, where the Roe scheme consistently models
shocks in much fewer points with less smearing. None of the schemes show
any sign of flow separation, which also agrees with the experimental
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data. Figure 17 shows a series of pressure contours along the wing span.
The contours in Figure 17.a at 44% semispan location clearly show a weak
shock at the 20% chord position and a much stronger shock near the 60%
chord position. Figure 17.b shows the result at 65% semispan location.
Strong shocks exist at about the 20% and 50% chord positions, and the
rear most shock is located further forward. The 95% semispan location
(Figure 17.c) clearly shows the shocks having coalesced to form one at
the 25% chord position and this shock is by far the strongest shock of
all those observed in Figure 17. Figure 17.d shows a view of the
contours along the upper surface and the double shock pattern coalescing
into a single shock at the tip. These solutions compare well with the
experimental data. The comparison of the Roe scheme with the BMULE
scheme is as expected. The Roe scheme shows slightly improved results in
the leading edge expansion region and directly downstream. The Roe
scheme is obviously superior again in all shock regions where BMULE has
smeared the shocks over several grid cells. There is little or no

difference between the two solutions for the lower surface calculations.
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SECTION VI

UNSTEADY RESULTS

6.1 Oscillating NACA 0012 Airfoil

Unsteady two-dimensional calculations were performed for the NACA
0012 airfoil oscillating in pitch about the 25% chord point as described
in paragraph 4.4. The grid used was the same as previously presented in
Figure 1. The calculations presented in paragraph 4.4 were all for only
the first 60 degrees of oscillatory motion. The calculations were all
stopped at this point in the cycle to compare results from different time
step sizes amd subiteration combinations. The results to be presented
here are examples of taking selected cases from those presented
previously and continuing the motion for a full 4 cycles (1,440 degrees
of oscillatory motion) and comparing the lift and moment coefficient time
histories and selected "snap-shots" of the pressure distributions from

the last cycle of motion.

The first case presented is a comparison of 4 minimum time step
subiterations and 4 local time step subiterations both for DT = 0.05111,
vwhich correspords to a maximum CFL of 45,000 compared with a 0
subiteration case using a DT = 0.005111 time step. The 0 subiteration
case at DT = 0.005111 was used at the small time step for comparison
purposes instead of the DT = 0.00102, which was used for the first 60°
motion cases. This larger time step was selected for cost savings, since
to calculate 4 cycles of motion with the small time step (DT = 0.00102)
would require 200,000 iterations, while the larger (DT = 0.005111)
required 40,000 iterations. The lift coefficient versus time plot is
shown in Figure 18.a and the moment versus time shown in Figure 18.b.
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Only a slight difference in the lift curve is noticeable at the maximum
ard minimum values of 1lift due primarily to the slight displacement of
the shock location resulting form the larger time steps. The difference

is more pronounced for the moment curves (Figure 18.b).

The second case presented is a comparison of a one-block grid and a
three-block grid shown in Figure 19 for the NACA 0012 airfoil. Four
minimum time step subiterations were used for both the one-block and the
three-block grids with a time step of DT = 0.05111. Figure 20.a - 20.h
show snap-shots in time of unsteady pressure distributions for the two
blocking arrangements. The slight differences in sor< of the pressure
distributions can be attributed to a couple of reasons. First,
as mentioned in Section IV the boundary conditions used at block

interfaces were those de.eloped by Belk, and the error generated by

approximating the AQ (O(At°/AX)) causes a slight misplacement of
the shock position between the one and three block cases, especially for
the times when the shock is traveling the fastest (i.e., Figures 20.a and

20.e). Secondly, the use of blocks degrades the convergence rates for

steady solutions (see Belk ¢) and as a result the subiterations for the
three-block case do not converge as rapidly as do the subiterations for
the one-block case, which accounts for the slight differences in the

unsteady pressure distributions elsewhere in the solvtion.

Figure 21 shows the pressure contours for the three-block case at
the end of the fourth cycle of motion. Note that even though the airfoil
is back to the 0 degree angle of attack position, the flow field is not
symmetric and a relatively strong shock still exists on the lower
surface. This is a good example of how the aerocdynamics lag the
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time-dependent motion of the body.

The third and last two-dimensional case presented is a comparison of
the same 4 minimum time step subiteration case using the first order
backward Euler differencing formula, Equation (3.5a), compared with 4
minimum time step 2nd order subiteration using the three-point backward
difference formula given in Equation (3.5b). Figure 22 show snap-shots
of the unsteady pressures at the same times as shown in Figure 20,
compared with the experimental data?’. As noted by Belk © this
data is somewhat suspect due to obvious asymmetric properties, even
though the solution should be very nearly a symmetric solution. Belk
determined a steady angle of attack somewhat larger than the 0.016°
should be used to improve the correlation between experimental data and

calculations.

The second order solutions show the shock leading the shock
location predicted by the first order solutions for DT = 0.005111 and DT
= 0.05111 with 4 minimum subiterations. The largest difference occurs
when the shock is traveling the fastest, such as the 70° of oscillatory
motion (Figure 22.b). Note that at the point where the shock is
basical'y stationary (i.e., 160° of motion) the two DT = 0.05111 cases
for first and second order schemes are essentially identical. At all the
times shown in Figure 22 the second order solution shows a closer
agreement with the experimental data than does the two first order

solutions.

The comparison of the 2nd order solution and the experimental data

indicates an even closer agreement between the two would be possible if a
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slightly larger steady angle of attack was used for the calculations.
For example, a larger steady angle of attack added to the unsteady angle
of attack would in Figures 22.b - 22.d result in a larger expansion
region and a shock location farther aft as indicated by the experimental
data. Likewise, in Figures 22.f ~ 22.h when the airfoil is at negative
angle of attack a larger (more positive) steady angle of attack would
result in a smaller expansion region on the lower surface and the shock
located farther forward as indicated by the experimental data. This

confirms Belk's findings on the same subject.

6.2 Oscillating Supercritical Rectangular Planform Wing

The supercritical rectangular planform wing was used as the three-
dimensional unsteady check case for this work due to the extensive amount
of wind tunnel test data’’ that exist. The wing has an aspect ratio
of 2 and was oscillated about the wing pitch axis located at the 40%
chord. The experimental data used was taken in Freon, and therefore the

ratio of specific heats is y = 1.131 with a transonic Mach number of

0.7 and a steady angle of attack of 4°.

The grid for this case had 221 x 40 x 15 points. The grid used a
"C" mesh in the streamwise direction and a "H" mesh in the spanwise
direction. Each of the K planes (constant spanwise location) have the
same point distribution as the two-dimensional grid used for the NACA
0012 airfoil calculations, Figure 1.a, with clustering at the leading and
trailing edges. The distribution was selected to give the most
orthogonal grid possible, Figure 23.a. There are 10 such planes of data
distributed down the wing span, with the planes being clustered near the
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tip. The wing tip was not modeled in this case as was done for the ONERA
M6 wing, but instead the airfoil was simply collapsed to a line at the
K=11 plane, which was placed just out from the wing tip. An additional 4
grid planes were distributed in the spanwise direction to the farfield
boundary (Figure 23.b). The spacing for the first point off the wing was

.« such that a minimum Y of 1.5 occurred on the wing.

The grid described was used for steady calculations to compare with
the experimental data from Reference (35) to verify the quality of the
grid before performing the unsteady calculations. The results near the
wing tip are of particular interest since the grid used did not mcdel the
tip correctly. The transonic flow conditions were Mach = 0.701 and 4.0°
angle of attack, which was considerably different from the supercritical
design corditions of Mach = 0.8 and 0.0° angle of attack, and results
in a sharp shock near the 20% chord. The Figures 24.a - 24.d show
excellent agreement with the experimental data and confirm the quality of
the grid (including the collapsed wing tip) to accurately model the flow

field for the rectanqular wing. Belk ’ has reported a predicted shock
position downstream of the position shown in the experimental data using
an inviscid approximation. The inclusion of the viscous terms has
corrected the position of the predicted shock to more nearly coincide
with the experimental data.

The three-dimensional unsteady calculations were obtained at a Mach

nunber 0.699 and a steady angle of attack of 4.03°. The angle of
attack was varied according to Hquation (4.20) with an unsteady anplitude

of 1.035° ard a reduced frequency, Equation (4.19), of 0.358.
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A steady starting condition was obtained using a CFL of 5 for 1,000
iterations, after which the motion was impulsively started. The
calculations were run for three cycles of motion. During the third cycle
the pressure coefficients were saved at each time step. The time step

size was DT = 0.069, which corresponds to 360 time steps per cycle of

motion (same as used by Belk ° for the inviscid calculations), and 5
minimum time step subiterations were used to converge the solution at
each time step by nearly one order of magnitude. The maximum CFL for

this case was approximately 17,000.

The magnitude and phase of the unsteady pressure coefficients from
the third cycle of motion was obtained by Fourier analysis. The
magnitude and phase of the unsteady pressure coefficients are presented

along with the inviscid results from Belk ° and the experimental
data3’, for the semispan locations in Figures 25.a ~ 25.g9. Again

the predicted results compare well with the experimental data. Belk ?
reported a misplacement of the sharp spike in magnitude of the unsteady
pressure coefficient due to the inviscid code misplacing the shock. Once
again the inclusion of the viscous terms has seemingly corrected this
problem to give good agreement with the experimental data.

The good comparisons tend to drop off as the wing tip is approached,
such that at the 95% semispan location the phase comparison with the
experimental data (Fiqure 25.f and 25.g) is not as good. The shift in
the phase for the upper surface is obviously misplaced, and the phase for
the lower surface is consistently under predicted. The story is similar
but not as severe at 85% semispan location. It should be noted that the
experimental data at this station for the lower surface is highly
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suspect, since the data does not follow the obvious trend of the data at
the stations on either side (inboard or outboard). The reduced accuracy
at the tip should come as no great surprise considering the grid
treatment of the wing tip. Belk's ? results, while showing some decline
in accuracy near the tip, do not show as dramatic a change. This
strengthens the argument for blaming the grid topology used ("C-H") since
Belk used a ("C-0") type grid similar to the one used in this work for

the ONERA wing.




SECTION VII

CONCLUSIONS

Two algorithms have been presented for computing unsteady thin-layer
Navier-Stokes solutions for oscillating airfoils and wings. The
algorithms, flux vector split (FVS) and flux difference split (FDS) were
first campared for steady viscous calculations. The caomputed laminar
boundary layer profiles for a flat plate were compared with the Blasius
solutions and the FDS was the clear winner since it managed to capture
the laminar profile with only three grid points inside the boundary
layer, while with four times as many grid points inside the boundary
layer, the FVS scheme could still not match the comparison of FDS with
the Blasius solutions. The inability of the FVS scheme to capture a
laminar boundary layer is due to the excessive numerical viscosity in the
scheme. Similar improvements in the computed steady solutions for the
RAE 2822 airfoil and the ONERA M6 wing were observed for the FDS scheme.
The numerical dissipation in the FVS schete is also observed in shocks in
the form of smearing the shock waves over several grid cells. The
improved solutions for the FDS scheme did not come cheap, since the FDS
scheme has a higher operational count than does the FVS (approximately
20% higher), and the convergence rate for the FDS scheme is slower than
the FVS scheme, therefore requiring more iterations to reach the same

convergence level (approximately 25% more iterations).

The second order FDS scheme with the minmod limiter was selected as
the algorithm to be used for the unsteady thin-layer Navier-Stokes
computations. The emphasis was placed on obtaining time-accurate viscous
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solutions for oscillating airfoils and wings as cheaply as possible.
Since the diffusive terms were treated explicitly, the formal temporal
accuracy of the algorithm without subiterations was limited to 1st order
accurate. A form of Newton subiterations was implemented to converge the
unsteady calculations at each time step before progressing the solution
to the next time step. The use of these subiterations then allowed the
calculations to progress at much larger time step sizes (and CFL number)
than would otherwise be possible. The use of subiterations also provided
the capability for a 2nd order time accurate scheme at convergence of the

subiterations.

The use of subiterations were shown to significantly improve the
quality of the solution, and in some cases allow a solution to be
obtained which otherwise would have been impossible at the time step size
being used. Unsteady calculations for the two-dimensional NACA 0012
airfoil were performed to help select the proper combinations of the step
size and subiteration number to give the best possible solution. The
results from these calculations were used to make more extensive two and
three-dimensional unsteady calculations to compare with experimental
data. The three-dimensional calculations for the supercritical
rectangular planform wing showed excellent agreement with the
experimental data, and the use of subiterations with the FDS scheme
resulted in a relatively efficient algorithm which could be used in more

carplex three-dimensional unsteady viscous calculations.
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TABLE I

SBECOND ORDER TRUNCATION ERROR

Y NAME b 2nd order TE
1/3 Third-Order 4 0
-1 Fully Upwind 2 %(Ax)2
' 1 2
0 Fronm's 3 -Q(Ax)
1/2 Low ™ "dorder | 5 —:%(Ax)z
1 Central © --%(A.x)2
-1/3 No Name 2 l(ax)?
2 [
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TABLE II

SUMMARY OF TIME STEP SIZE RUNS °

TIME STEP # ITERATIONS CPU SBCONDS ¥ SUBS
0.0010 8250 46060 0
0.0051 1640 9161 0
0.0102 833 737 0
0.0511 167 149 0
0.1022 83 76 0
0.2044 42 39 0

*
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First 60° of motion.




TABLE III

SUMMARY OF SUBITERATION RUNS °

TIME STEP # ITERATIONS CPU SECONDS # SUBS
0.0511 167 1546 16 MIN
0.0511 167 497 4 MIN
0.0511 167 324 2 MIN
0.2044 42 729 32 MIN
0.2044 42 383 16 MIN
0.2044 42 214 8 MIN
0.0511 167 1530 16 LOCAL
0.0511 167 495 4 LOCAL
0.0511 167 322 2 LOCAL
0.2044 42 735 32 LOCAL
0.2044 42 382 16 LOCAL
0.2044 42 208 8 LOCAL

' First 60° of motion.
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c. 95% semispan location

Figure 17. (continued)
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Upper surface pressure contours

d

(concluded)

Figure 17.
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APPENDIX A
CURVILINEAR TRANSFORMATION

The Navier-Stokes equations in Cartesian coordinates from Equation

(2.7) are

da, df 49 dh (A.1)

at  ax Ay  az

The general curvilinear coordinates are given as

E(x,y,z,t)

S

N = “(x,y,z,t)
C = {(xy,2,t) (a.2)
T =71(t)

Expanding the Cartesian coordinates in terms of the curvilinear
coordinates using the chain rule gives

d _arad ,d&a ,dna 4T a

at At ar atar At 3y At

a A Ana LA

aX ax g ax dy ax ag

d_ H_Ei_+dﬂﬂ_+£ﬂ (A.3)
dY Jy df 4y dy Y &€

A8 a cdna LAt

Az Az Az ang Az &€

The inverse of this relationship is determined by expanding the

curvilinear coordinates in terms of Cartesian coordinates (in matrix

form) as

139




s B . ]

d t X Z 4

aT (S B A AN

a | . i (A.4)
3t 0 XE yE zE X

d . ) d

dn 0 al yn “ dy

4 0 X l 2 i

R B ¢ 5( ¢ Az

Let Equation (A.4) be written as

(1=1[a]" L[]

The jacobian of the transformation is given by the det of [A] defined as

J' =N

= Ky 2, YV .Z.Xr *ZX Vo T 2oV Xr T VoXpZp " XpZaVed
S0 Rt G k| A G e | G S0 | N G | R G k| L ¢
-, ]

where,

J =Ik.&y z. -2 Y +y (7 x. - )+ 72 (x vo —v x.)]  (A.5)
RO G M S e R G S GRS ¢
The metric coefficients are determined by inverting the martix A to yield

-1

= ( - )
g, =1 VoEc T i

v =71« -y )
Sy J Z'HX( xnz{

vo= (v - )
&, 71 W TV

-1
= ( b - 7 )
Ny J ZE“V{ B‘EZC

-1
= (x.. -7.x.)
"y J XLjZ( z&xg

-1
=7« - xv)
n, J y5x§ Y&yg

140




El
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“XpEy Y

=Tt (—

(yE . - ZEY )

(v -
XEyn

XT"X

1M
- )
ZEX"] XEZn
ygxn>
(A.6)

- )
zTEZ

- - )
Yy T 240,

(t = Tt_ (- XT(X - yT(:y - Z‘rcz)

Substituting the expanded derivatives in Cartesian coordinates

(Bquation

(A.3)) into the Navier-Stokes equations (Equation (A.1)) results in

dq
t aT

af
Ex aE

_ﬂg
év 35

dh
g, 3%

tn

r]q
"t "]E

af
an

ag
31]

1]X

Z In

*heaot
+¢
ah

aq |
My ay * St 3 (
af

g

y ac |
dh _

(Z A

(a.7)

Then by multiplying Equation (A.7) by J' and using the chain rule

Equation (A.1) becomes

JQ
ar

where,

L dF
TS
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Q = J'7

F=J'
G=J
H=J'

]
P

pu
pv
pw
| €

[pU
(]UU + Exp - TEx

pvU + Eyp - Tgy

pwlU +Ep - T,

pr—y

pv

puv +np - T,
pvV + np - T,

pwV +np - T,

o

pW

puW + (xp - T_rz
pvW + {yp - Ty,
pWW + gzp - TCZ

L.
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L(e+p W -&p ~uT,,

L(e’fp)V -np -uT, -vl  -wT *T,

~

(epW ~Tp ~uT,, ~vT,, ~WT, * [,

(A.9)
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o
0

g tegut EyV tEwW
V=g +tnut nv W

¢ T LW

£

TEX - ExTxx * EyTyx * Ez‘rxz

= + v
TEY ExTxy 5 Tyy * Eszy

= + X
TEz Ex Xz SyTy:: * E3Tzz
= + +
T T * 0Ty T 0T,
= + + (A.10)
T Ny nxTXY nyTYY “zTXY
= + +
T,. =0T, WT, T

— 2
X
o
"
N
£
>
>

* cyTyx + {_,sz
T(y ) ngxy * CyTyy * g—Txy

T{—; = gx‘rxz + cyTyz + g—Tzz

My =89, *84q, " &4,
F, =04, *ng, * 04,
Fe =00, *Cq, + ¢

The visoous stress tensors for the full Navier-Stokes equations are
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p
Tex = %};1’2 [Z(Exuz*'”xun*{xu() - (Eva-’-nyVnijvc) - (Ezwgﬂzwﬂ-’{zwf )]

e

Tey = %ERT_O [Z(Eyvg""y"nﬂyvc) - (Equ+nqu'+{xu§_) - (Ezw +n, WK We )]

T, = 2“"& {2(§ng+nzwn+§zw§) ~ (EXuE+nxun+{xu§.) - (Eyv,c_+nyv”+§yv( )]

L
Ty = RS Y%y + Lo + 5y + vy + 5,9 ]
sz ) % [EzuE +nzun * fzu{ + E:-:WE + nxw'l + rxwf]
_ M
Tyz = R [EZVE Vg Ve B oy 4 cwa:l

and the heat flux terms are

=

(e, T, + 0T, + 0 T ]

o)

"
p

' —h

\4.-2
n
-
A= AE R

[EyTE + rlyTn + {yT{_]

=
I
1]
p
| —

[EZTE + 0T, + czTr]
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